Home
Back
Contents Türkic Genetics Contents Pazyryk Genetics Contents Amerin Genetics
Sources
Roots
Tamgas
Alphabet
Writing
Language
Genetics
Geography
Archeology
Religion
Coins
Wikipedia
Ogur and Oguz
Klyosov A. Türkic DNA genealogy
Datelines
Ephthalite Dateline
Alan Dateline
Avar Dateline
Besenyo Dateline
Bulgar Dateline
Huns Dateline
Karluk Dateline
Khazar Dateline
Kimak Dateline
Kipchak Dateline
Kyrgyz Dateline
Sabir Dateline
Seyanto Dateline
Türkic Genetics · Тюркская Генетика
Genetics and Physical Anthropology Генетика и Антропология
For full-size pie-charts, click here.
Graph color coding follows J. D. McDonald 2005 “World Haplogroup Maps”
Для графиков в полном размере, клик здесь.
Цветовое кодирование графиков следует J. D. McDonald 2005 “World Haplogroup Maps”

Foreword

Введение

First, the genetical composition and outer appearance need not to be confused. Genetical composition is a macro state, with a global perspective and imperceptibly slow changes; it is a statistical matrix. The outer appearance is a micro state, close to individual layer, driven by genetical micro changes, and fast and fluid. In archeology, the outer appearance is yet imperceptible, the skeletons are not only mute, but also give no indication about the color, texture, and curling of hair, eyes color, pigmentation, epicanthic folds, etc. A group may have a huge intra-group diversity, but at a first glance look somewhat similar.

Second, we are just approaching the resolution needed for demographical perceptive. Unlike sedentary peoples, the Türkic peoples were distinguished by high mobility and high fluidity. As a result, almost any category in the past studies is comprised of a number of distinct elements, and without seeing these constituent elements the picture is blurred and misleading. For example, the Senior Juz of the Kazakh people in its composition has two main components, each with a unique history and origin: Uisyn aka Usuns, of Dulat aka Dulo, and Sary Uisyn subdivisions, and Kangly, who descend from the ancient Kangar (Ch. Kangju). Without a closer examination, the genetical image is as realistic as a serving of potato soup, which in reality consists of quite distinct potatoes, meat, onions, etc. The genetical analysis is also complicated by comparisons of incompatible objects. The genetical picture of countries with poly-ethnic population, taken at its statistical median, can't be meaningfully compared with the genetical picture of ethnically relatively homogenous groups, like Kazakhs compared with Mari. Historians and anthropologists need a more detailed resolution.

Thirdly, explicit or implicit, there floats a notion that a certain ethnicity, and even politonym, somehow has “its” haplogroup, transplanting us from a statistical world into a world of doctrines and beliefs. That notion is a relict of creationist mentality, an individual with a certain non-consequential genetic marker creates a race of purebred clones developing in isolation from the rest of the humanity, and distinguished by “its” language, etiology, and ethnology. Such notions conflict with inextinguishability of the genetic lines, with nature's inability to rectify population based on invisible non-consequential markers, and with the social realities of life. For example, in nature the parental NOP-marked line has as many if not more chances to survive than its daughter R-marked line, and nature has no mechanisms to stratify population into marker-denominated streams. In this world, things do change, but no stochastic process would create an organized structure by random experimentation.

On another hand, parents pass on their genes independently of their language, etiology, and ethnology. They can change their cultural traits, but can't change their genetical traits. When a statistical majority is correlated with a particular marker, we would rather presume (i.e. guess) that the majority retained their traits, and the minority switched their cultural traits. For example, the majority of peoples predominantly marked with Y-DNA haplogroup C belong to Tungus peoples, and the minority outliers with the same predominant C-marked haplogroup belong to linguistic Mongols, Iranians, and Chukchi. In that situation, it is quite reasonable to accept that Mongols, Iranians, and Chulchi received their present languages in a process of cultural adaptation.

When the reality shows up at the doorstep, even learned scientists that know better have to listen. Citing Dienekes blogspot on the incoming “surprise” results, “This really puts into question the nature of the proto-Indo-Iranians and the "Caucasoidness" of the Bronze Age IE in Siberia.” It sure does, exactly like on the first day these naatturress were concocted. Fortunately, nobody displays any embarrassment.

And lastly, the genetic graphs demonstrate the spuriousness of the“Altaic” category, and its continued use in genetic research not only was failing to model an analyzable concept, but also tends to produce misleading results and superficial conclusions. Fortunately, the macro-Altaic category, heavily advocated in the past century, by now is pretty much discredited.

Во первых, генетический состав и внешность не должны быть спутаны. Генетический состав - это макро-состояние, с глобальной перспективой и неощутимо медленными изменениями; это - статистическая матрица. Внешность - это микросостояние, близкое к индивидуальному слою, оно управляется генетически микроизменениями, быстрыми и летучими . В археологии внешность не улавливаема, скелеты не только немы, но еще и не показывают цвет, структуру, и волнистость волос, цвет глаз, пигментацию, эпикантные складки, и т.д. Внутригрупповое разнообразие может быть огромным, но по внешности все смотрятся как-то похоже.

Во вторых, мы только приближаемся к разрешению, необходимому для демографической перспективы . В отличие от оседлых народов, Тюркские народы отличались высокой подвижностью и текучестью. В результате, в прошлых работах почти любая этническая категория состоит из множества отдельных элементов, без этих элементов картина туманна и заблуждающая. Например, Старший Жуз Казахов имеет два главных компонента, каждый с уникальной историей и происхождением: Уйсин иначе известный как Усуни, состоящий из субдивизий Дулат, иначе известный как Дуло, и Сары Уйсын, и Канглы, происходящие из древнего государства Кангар. Без подабающего разрешения, генетический образ является столь же реалистичным как картофельный суп, который в действительности состоит из весьма отличных картофеля, мяса, лука, и т.д. Генетическая картина стран со многоэтническим населением, в еe статистической сердине, не может быть продуктивно сравненена с генетической картиной этнически относительно гомогенной группы, как Казахи по сравнению с Мари. Историки и антропологи нуждаются в более детальном разрешении.

В-третьих, явно или неявно, существует понятие что тот или иной народ, и даже политоним, как-то имеет "свою" гаплогруппу, это переносит нас из статистического мира в мир доктрин и верований. Эта идея - реликт менталитета креационизма, что человек с определенным несущественным генетическим маркером может создать расу чистокровных клонов развивающихся в изоляции от остального человечества, и отличающуюся “своим” "языком, этиологией и этнологией. Такое понятие конфликтует с непресекаемостью генетической линии, с невозможностью естественной чистки населения на основе невидимых несущественных маркеров, а также с социальными реалиями жизни. Например, в природе родительская линия NOP-маркера имеет столько же, если не больше, шансов выжить, чем ее дочерняя линия R-маркера, и природа не имеет никакого механизма стратификации населения по потокам отмеченных определенным маркером. В этом мире вещи меняются, но никакой случайный процесс не создаст организованную структуру в ходе беспорядочных экспериментов.

Когда реальность появляется на пороге, даже ученые ученые которые знают лучше, должны слушать. Цитируя Dienekes blogspot о получении“неожиданных” результатов, “Это действительно ставит под сомнение натуру прото-Индо-Иранцев и “Коказоидность” ИЕ Бронзового Века  в Сибири.” Конечно ставит, так же, как было и в первый день когда эти нааттурры были сочинены. К счастью, стыда никто не показывает.

И наконец, генетические графики демонстрируют исскуственость категории“Алтайских” языков, и длительное использование ее в генетических исследованиях не только не было в состоянии моделировать концепцию поддающуюся анализу, но также имело тенденцию приносить заблуждающие результаты и поверхностные заключения. К счастью, категория макро-Алтайского языка, сильно продвигаемая в прошлом столетии, к настоящему времени уже смертельно дискредитирована.

Average statistical undifferentiated genetic image of Kazakhstan
Differentiated graphs must be totally different
Среднестатистическая недеференцированная генетическая картина Казахстана
Дифференцированные графики должны полностью отличаться

 

mtDNA = mamas

Graphs show what would happened after waves after waves of migrations would keep replacing their maternal mtDNA with the local mtDNA over and over again. Depending on particular circumstances would change the appearance of the migrants and the locals, their language even if not completely replaced, their traditions, and their culture. The male-driven economy, military aptitude, class structure, and social organization would be propagated.

Statistically, the vast majority of the population hold its genome and its haplogroup, that is, they marry their neighbors; offspring repeat the distribution of haplogroups of their ancestors: the dominant Y-DNA haplogroup of the fathers remains a dominant Y-DNA haplogroup of the sons, and the dominant mtDNA haplogroup of the mothers remains a dominant mtDNA haplogroup of the sons and daughters, with only daughters passing their mtDNA on.

The picture changes dramatically with replacement of the previous male population (hostile invasion). The dominant mtDNA haplogroup of the mothers remains a dominant mtDNA haplogroup of the sons and daughters, while the dominant Y-DNA haplogroup of the population is changing radically. Analysis of mtDNA does not catch such migratory changes due to the limited statistics.

Графики показывают, что бы произошло кагда волна за волной миграции опять и опять заменяют материнскую мтДНК местной мтДНК. В зависимости от конкретных обстоятельств будет меняться внешний облик мигрантов и местных, их язык даже если не полностью замещенный, их традиции, и их культура. Принесенные мужчинами тип хозяйства, военные традиции, кастовые структуры и социальная организация выживут и возьмут верх.

Статистически, в подавляющем большинстве популяции держат свой геном и свою гаплогруппу, т.е. женятся на своих; отпрыски повторяют распределение гаплогрупп у своих предков: доминирующая Y-ДНК гаплогруппа отцов остается доминирующей Y-ДНК гаплогруппой сыновей, и доминирующая мтДНК гаплогруппа матерей остается доминирующей мтДНК гаплогруппой и сыновей и дочерей, но только дочери передают свою мтДНК дальше.

Картина резко меняется при замене мужчинами предыдущего мужского населения (враждебное вторжение). Доминирующая мтДНК гаплогруппа матерей остается доминирующей мтДНК гаплогруппой и сыновей и дочерей, но доминирующая Y-ДНК гаплогруппа населения меняется в корне. Анализ мтДНК такие миграционные изменения не вылавливает из-за ограниченности статистических данных.

Fedorova et al., 2003
Analysis of Mitochondrial DNA Lineages in Yakuts
http://evolutsioon.ut.ee/publications/Fedorova2003.pdf

Table 2. Diversity of mtDNA haplotypes and frequencies of race-specific mtDNA haplogroups
in the gene pools of Turkic ethnic groups and North-East Asian indigenous populations

Fedorova et al., 2003

Population Total HVSI
haplotypes
H Gene pool component, % Notes
Caucasian Mongoloid Unidentified
Türkic ethnic groups
Chuvash 390.988 89.1 9.1 1.8
Tatars 91 0.976 89.1 10.3 0.6
Turks (added)     66.9 6.0 10.6
Bashkirs 105 0.988 60.7 39.3 0
Kazakhs 45 0.990 40.0 56.4 3.6
Shorians nd nd35.7 64.3 0
Uigurs 46 0.993 34.5 54.5 10.9 Alt. data
Kyrgyz 70 0.990 27.4 68.4 4.2
Altaians (N = 110)     27.27   13.64
Altai-kizhi nd nd23.9 67.4 8.7
Tofalars (N = 58)     20.69   3.44
Khakassians nd nd18.5 75.9 5.6
Sakha (Yakuts) 67 0.964 8.4 91.6 0
Todjins (N = 48)     8.33   6.25
Soyots nd nd 5.9 88.2 5.9
Tuvinians nd nd5.6 94.4 0
Uzbeks (added)          
North-East Asian populations
Evens 330.962 090.8 9.2
Koryaks 410.945 0100 0
Itelmen 190.931 0100 0
Chukcha 190.883 0100 0
Eskimo 120.819 0100 0
Nenets          
Mongolia
Mongols 830.990 13.6 86.4 0
Note: The number of HVSI haplotypes has not been determined (nd) in some cases, as mtDNA haplogroups have been established by R FLP analysis without HVSI sequencing
H, HV1, J, T, U, W - Western Eurasian (aka Caucasian) mtDNA haplogroups

Haplogroup:
H
HV1
J
T
U
W
O* is ancestral to about a half of Europeans

A, B, C, D, F, G, M*, Y - Eastern Eurasian (aka Asian, Mongoloid) mtDNA haplotypes

Haplogroup:
A is common for virtually all Siberian ethnic groups
B originates from South Asia
C is a source of female mt-DNA among the Türkic people. Into the Türkic  fold it comes from the Tungus (Ch. Dunhu) peoples, who are known to us as Tunguses and Mongols and Manchu, and also as Koreans and Japanese. The highest diversity of C is in the Indian subcontinent (50,000 bp), indicating location of its emergence. C spread to many indigenous populations of Siberia and in Central Asian ethnic groups, reaching Goths, modern England and New York, provinces of Belgium, and Amerindians prior to 1492.
D is a source of female mt-DNA among the Türkic people. Into the Türkic  fold it comes from the Tungus (Ch. Dunhu) Mongols and Manchu, and also from north-eastern Asian people.. The highest diversity of D is in the Middle Asia (40,000 bp), indicating location of its emergence. D spread to and with many indigenous populations of Siberia, reaching Goths, modern England and New York, provinces of Belgium, and Amerindians prior to 1492.
F originates from South Asia similar in distribution to haplogroup B
Haplogroup G contains two subclusters:
Gl characteristic of North-East Siberian populations
G2a with highest (8.8%) frequency detected in Central Asia
Y is thought to originate from the Far East
M*  is thought to arose 50,000-70,000 BP in Southern Asia and migrated to Southeastern Asia 50,000-60,000 BP.
M1 is much older than notable expansion time of 12,000-13,000 BP
Y is
N is popular in Africa. Analysis of Aurignacian Cro-Magnon mtDNA attests that their mamas belonged to haplogroup N.

 
Table 3. mtDNA Haplogroup frequency distribution in the gene pools of Türkic ethnic groups
and North-East Asian indigenous populations

Fedorova et al., 2003 >
Population mtDNA Haplogroup frequency, %
Eastern Eurasian Haplogroups Western Eurasian Haplogroups Others
Graph В С D G FM* J Т U H
Türkic ethnic groups
Chuvash 1.8 0 1.8 3.6 0 0 1.8 5.5 3.7 36.4 25.5 19.9
Tatars 2.3 0 1.7 2.9 1.2 0 2.3 8.1 8.1 24.7 31.6 17.1
Bashkirs 4.3 0 12.8 8.1 4.7 6.2 1.0 3.3 5.2 27.5 14.2 12.7
Kazakhs 9.6 5.8 7.7 19.2 5.8 1.9 5.8 0 7.7 5.7 15.4 15.4
Shorians 0 2.4 7.1 9.5 0 43.0 2.4 11.9 0 0 21.4 2.3
Uigurs 7.3 7.3 1.8 16.4 0 7.3 7.3 0 1.8 16.4 20.0 14.4
Kyrgyz 3.3 6.5 14.1 19.6 7.6 3.3 6.5 5.4 3.3 3.3 18.5 8.6
Altaians (N = 110) 0 3.64 19.09 15.45 0.91 8.18 11.82 3.64 0.91 16.36 6.36 13.64
Altai-kiji 3.3 3.3 30.4 9.8 4.4 5.4 9.8 5.4 0 5.4 5.4 17.4
Tofalars (N = 58) 5.17 3.45 62.08 0 0 0 5.17 8.62 5.17 0 6.9 3.44
Khakassians 3.7 5.6 35.2 9.3 0 22.0 0 1.9 1.9 11.1 3.7 5.6
Sakha (Yakuts) 2.1 0.5 44.0 30.4 4.2 6.3 2.6 1.1 1.1 1.1 2.6 4.0
Todjins (N = 48) 4.17 4.17 47.91 4.17 18.75 2.08 4.17 0 0 6.25 2.08 6.25
Soyots 8.8 2.9 17.6 50.0 0 0 0 0 0 5.9 0 14.8
Tuvinians (n=36) 5.6 14.0 36.1 16.7 5.6 8.3 0 0 0 2.8 2.8 8.1
Tuvinians (n=458) 3.1 3.7 48.9 9.9 nd nd nd nd nd nd nd nd
Uzbeks (added)                        
Turks (added) 1.3 0       0.3 4.4 10.9 11.9 19.1 25 10.6
North-West Asian populations (Uralic/Ugro-Finn ethnic groups)
Komi-Permyaks                        
Komi-Zyryans                        
Mari                        
Mordvins                        
Udmurts                        
North-West Asian populations (Uralic/Nenets ethnic group)
Ic R1bd R1a N3 N2 Q C
0 0 0 40.5 56.8 1.4 0
Nenets  nd nd 0 nd nd nd nd nd nd nd nd nd
North-East Asian populations
Chukotko-Kamchatkan language family Chukcha, Eskimo
Koryaks 5.2 0 36.1 1.3 41.9 0 0 0 0 0 0 15.5
Itelmen 6.4 0 14.9 0 68.1 0 0 0 0 0 0 10.6
Chukcha 68.2 0 10.6 12.1 9.1 0 0 0 0 0 0 0
Eskimo 7.2 0 2.5 20.3 0 0 0 0 0 0 0 0
Tungus (Ch. Dunhu), Manju, Koreans, Japanese
Evenks 3.9 0 84.3 9.8 0 2.0 0 0 0 0 0 0
Evens 4.6 0 26.2 15.4 0 0 1.5 0 0 0 0 52.3
Mongolia (Mongols)
Buryats                        
Mongols 3.9 9.7 14.6 30.1 2.9 5.8 11.7  1.0 3.9 7.8 8.6
Note: Cases when a haplogroup has not been determined (nd) are indicated

Table 25.1. MtDNA haplogroups in Anatolian-Trans-Caucasus populations (%)
Kristiina Tambets et al., 2000

Population Eastern Eurasian Haplogroups Western Eurasian Haplogroups                        
A Ä B F M Ml J T U H I K L O O* P* V+pV R* pJT/pHV W X Ü
Armenians 0 2.6 0.5 0 0 0 8.9 11.5 20.4 30.9 1.6 7.9 0.5 1 7.3 0 0 1 0.5 1 2.1 2.1
Georgians 0 2.2 0 0 2.2 0.7 3.6 12.9 21.6 17.3 2.2 10.1 0 0 7.2 1.1 0.7 5 0.7 1.4 10.1 0
Ossetes 0 11.8 0 0 2.1 0 18.7 6.9 17.9 18.7 4.3 1.1 1.1 0 13.4 0 0 5.0 1.1 2.1 0.5 0
Turks 0.5 0.8 0 0.3 4.1 0.3 10.9 11.9 19.1 25 2.3 5.9 0.3 1.3 3.6 0.5 0.3 1.7 2.3 3.9 4.4 0.3
Y-DNA = papas

Papas don't pass on mtDNA, their mom's mtDNA dies with them, but to their male progeny they pass on their Y-DNA marker practically intact. The end result is that other than maleness, practically no genetic code from the male side is passed to the remote offsprings. Instead, they pass on their dominant traditions and economy. Numerically, the female X-chromosome contains about 2000 genes, and the male Y-chromosome contains 78 genes, out of the minimum of 20,000 genes in the human genome, a pitiful contribution.

But papas pass their Y-DNA marker intact, while mt-DNA is constantly changing from generation to generation, which makes Y-DNA an indispensible holder of historical information. At the same time Y chromosome is one of the fastest evolving parts of the human genome. Tracing Y-DNA marker and its subtle changes allowed to build phylogenic trees and date them.

Unlike mtDNA, the Y-DNA does not correlate with geographical, linguistic, or phenotype domains. The same Y-DNA may be found in the east and in the west, across numerous linguistic groups, among Caucasoid, Negroid, and Mongoloid populace, while the mtDNA has expressed domains, and may be attributed to the east and the west, has some linguistic correlation, and some phenotype correlation. In the plot used in the “The King and I”, Margaret Landon eloquently expressed this phenomena as “A man is like the honey bee, to fly from blossom to blossom, a honey bee must be free, but blossom must not ever fly from bee to bee, to bee”. A bee is free to move from a rose to a cherry tree, marking its trace with Y-DNA, but roses don't start producing cherries, it is the domain of the egg and sperm nucleus. Offspring inherit one allele for each trait from each parent, thereby ensuring that offspring have a combination of the parents' genes.

Папы не передают свою мтДНК, мтДНК их мам практически умирает с ними, но своему мужскому потомству свой маркер Y-ДНК они передают почти неизменным. В конечном счете с мужской стороны на практике отдаленому потомству не передается никакой генетический код кроме гена мужского пола. Вместо генетического кода они передают свои основные традиции и хозяйство. Численно, женская X-хромосома содержит около 2000 генов, а мужская Y-хромосома содержит 78 генов, жалкий вклад в геном человека состоящий из по меньшей мере из 20 000 генов.

Папы передают свой Y-ДНК маркер нетронутым, а МТ-ДНК постоянно меняется от поколения до поколения, это делает Y-ДНК единственным маркером исторической информации. Прослеживание Y-ДНК маркера и его незримых изменений позволяет высчитывать и датировать филогенетические древья.

В отличие от мтДНК, Y-ДНК не коррелирует с географическими, лингвистическими или фенотипными доменами. Ту же Y-ДНК можно найти на востоке и на западе, у многочисленных языковых групп, среди кавказоидных, негроидных и монголоидных населений, в то время как мтДНК имеет выраженные домены и может быть связана с востоком и западом, иметь некоторую языковую корреляцию, и некоторую фенотипную корреляцию. В сюжете использованном в“Король и я”, Маргарет Лэндон красноречиво выразила это явление как“Мужчина, как пчелка, идет от цветка к цветку, пчелка должна быть свободной, но цветы никогда не должны летать от пчелки до пчелки, до пчелки”. Пчела перемещается свободно от розы до черешни, отмечая свой след маркером Y-ДНК, но розы не начинают приносить вишни, это задача ядeр яйцеклетки и спермы. Потомство наследует один аллель каждого признака от каждого родителя, тем самым обеспечивая что потомство имет сочетание генов родителей.

Dating and phylogeny for genetic Y-DNA marker of major groups in the text (courtesy of A. Klyosov):
Датировка и филогения Y-ДНК генетических маркеров основных групп в тексте
(любезность А. Клесова):
(Colors in the illustration do not correspond to the J. D. McDonald 2005 table
Цвета иллюстрации не соответствуют таблице J. D. McDonald 2005)


Y-DNA marker can be compared with golden dust from a creek that flows into a rivulet that merges with the other rivers, and at the estuary divides into many branches. The dust settled on the bottom does not reach the estuary of the present time, and the dust that came down to the estuary marks a trace from the creek through the entire river system to the present day and our demographic reality. The laminar areas of the system carry dust in parallel streams, stagnant areas are losing most of markers, and turbulent regions stir everything that flows into them, diluting the relative homogeneity of the laminar jet with additives from other laminar jets. Each sleeve of estuary gathers a different set of markers from different sources.

The picture can be slightly clarified by changes in the structure of the dust particles. By calculating their original form, it is possible to trace a pattern of their change in the stream in time, and to determine the relative and absolute age. Tracking changes of the Y-DNA marker allows to calculate and date a haplotype tree. This is Molecular History.

Y-ДНК маркер можно сравнить с золотистой пылью из источника, который вливается в речку, сливающуюся с другими реками, и у устья разделяющйся на множество рукавов. Пыль, осевшая на дно, не доходит до устья современности, а пыль, дошедшая до устья, отмечает трассу от источника через всю речную систему до наших дней и нашей демографической реальности. Ламинарные участки системы несут пыль параллельными потоками, застойные участки теряют большинство маркеров, а турбулентные участки перемешивают все что в них вливается, разбавляя относительную однородность ламинарной струи добавками из других  ламинарных струй. В каждом рукаве устья собирается свой набор маркеров из различных источников.

Слегка прояснить картину помогают изменения в структуре самих пылинок. Высчитав их первоначальную форму, возможно проследить закономерность в их изменении в потоке времени, и определить относительный и абсолютный возраст. Прослеживание изменений Y-ДНК маркера позволяет высчитывать и датировать древья гаплотипов. Это-Молекулярная История.

Haplotype tree haplogroup R1a1 in the Balkans (courtesy of A. Klyosov):
Древо гаплотипов гаплогруппы R1a1 на Балканах
(любезность А. Клесова):
(Modal (base) haplotype reached Balkans 9000 ybp
Модальный (базовый) гаплотип достиг Балкан 9000 лн)


Being biological sequins, markers can multiply, and in favorable conditions replace other markers, for example a feudal can fertilize all dames in his possession, producing male offspring of others only with his marker. In a society with widespread landowning elite belonging to a dominant ethnic group, Y-DNA markers of this group in a few generations would replace the markers of the more numerous serfs, coming to the fore in the relative prevalence. In the parlance of the population genetics, such genetical expansion is termed“meditated by males”

Будучи биологическими блесточками, маркеры могут умножаться, и в благоприятных обстоятельствах заменять другие маркеры, как например владетель крепостных может оплодотворять всех дам в своем владении, производя чужих отпрысков мужского пола исключительно с его маркером. В обществе повсеместной принадлежностью землевладельческой элиты к доминантной этнической группе, Y-ДНК маркеры этой группы за несколько поколений заменят маркеры более многочисленных крепостных, выйдя на первый план по относительной распространенности. На жаргоне популяционной генетики, такое генетическое распространение называется“посредством мужчин”.

 

http://hgm2001.hgu.mrc.ac.uk/Abstracts/Publish/WorkshopsPoster/WorkshopPoster06/hgm0198.htm

Y-chromosome haplotype diversity in populations of Altaic language family
Vadim Stepanov, Valery Puzyrev, Maria Spiridonova, Vladimir Kharkov, Irina Khitrinskaya
Institute of Medical Genetics, Nab. Ushayky 10, Tomsk, 634050, Russia

(Note, all timing estimates in this assessment are arbitrary guesstimates, and are systematically incorrect. For realistic data, turn to the works of A. Klyosov, Klyosov A. Türkic DNA genealogy, Klyosov A. R1b DNA History, Klyosov A. On IE R1a branch, Klyosov A. Autochthonous Altai DNA)

Distribution of Y-chromosome haplotypes in 10 ethnic groups of Siberia and Middle Asia belonging to Altaic language family (Tuva, Buriat, Northern and Southern Altai, Evenk, Kirghiz, Uzbek, Siberian Tatar, Uighur,Yakut) was investigated in order to reconstruct the evolution of paternal lineages in North Eurasia.

In modern North Eurasian populations were found high level of gene diversity (H=1.00) and substantial degree of genetic differentiation of male-specific gene pool (Fst = 0.212). Most haplotypes in modern Altaic population have common ancestry traced back to the Upper Paeleolithic period (about 15 kya). According to AMOVA results, 5.7% of observed diversity is due to differences between language groups of Altaic family, 19.9% is due to differences between populations within language groups, and only 74.3% of genetic diversity is attributable to within-population level.

In most populations werer found more than one lineage. Most ancient lineages (7-12 kya) were found in Uzbek and Kirgiz Türkic-speaking populations of the Middle Asia. Among native Siberian populations most ancient Y lineages was observed in Türkic ethnic groups in Altai and Tuva. The age of Siberian lineages obtained from the microsatellite variance within the 'binary' haplogroup were 5 to 6 kya.

Mongol-speaking Buryats and Evenks, belonging to Tungus branch, have relatively 'young' lineages in their male-specific gene pool. Age of two main Y-chromosome clusters in Buryats were 2,800 and 4,500 kya, and the age of Evenk lineages were 2-3 kya. Using the molecular variance of microsatellite haplotypes was estimated the age of ancestral haplotypes for 'binary' haplogroups. The age of DYF155S2 deletion was estimated as about 6,9 kya, and the age of T-C transition at Tat locus as 4,2 kya.

Color Codes (double check for accuracy)
Y-DNA Haplogroup frequency distribution in the gene pools of Türkic ethnic groups
and North-East Asian indigenous populations
Population Y-DNA Haplogroup frequency, %
Haplogroups Others
Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q
Türkic ethnic groups
Abdaly (Abzeli)/Ephtalites 19 55 0 0 0 0 8 1 8 - 0 1 1 - - - - - 0
Askhuns (Nuristan) - R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Alats (Alayundu) - - - 15 - - 32 - - - - - - - - - - - 53
Altaians (Northern) 38 6 0 0 - - 2 0 10 - - - - - - - - - 44
Altaians (Altai kiji, Southern) 53 1 2 1 - - 4 - 12 - - - - - - - - - 27
Azeri - free 5 0 0 5 - - 58 - 0 - - - 0 - - - - 16 21
Azeri - Iran 19 18 - 11 - - 27 8 2 - 8 3 - - - - - 5 0
Balkars 13 5 3 3 - 1 24 29 - - 7 - - - - - - - 11
Bashkirs (Perm) 9 86 0 0 0 - 0 2 2 - 0 0 - - - - - - 0
Chuvash 32 4 11 - - - - - 28 - - - 2 - - - - 0 24
Bulgar (Türkic)   R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Digors (N.Ossetia) 0 0 13 0 0 0 3 74 0 - 0 0 0 - 3 - 6 0 1
Dolgans 16 2 2 - - - - - 34 - - - 37 - - - - 0 9
Gagauzes Etulia 27 15 24 1 0 0 7 17 0 - 0 0 0 - 0 - 0 0 0
Gagauzes Komrat - - - - - - - - - - - - - - - - - - -
Gagauzes Kongaz 13 10 31 17 - 0 8 10 4 - 6 - - - - - - - 0
Gilan 16 20 2 3 - 2.0 36 16 2 - 0 5 - - 0 - - - 7
Gujarati (Abdaly/Ephtalite)   R1a R1b I E1b1b E1b1a H J G N O 8 L C D F K P Q Others
Kalasha 18 - 0 0 - - 9 18 - - 0 25 - - - - - - 30
Karachai 27 15 2 0 0 - 10 32 0 - 3 0 0 - 0 - 0 0 11
Karakalpaks 18 9 - - - - 9 - 2 11 - 5 - - 9 7 - - 22
Kazakhs - - - - - - - - - - - - - - - - - - -
Khakass (Yenisei Kyrgyz) 13 20 - 4 - - 46 12 - - 2 - - - - - - - 15
Kumyks 14 21 - 4 - - 44 13 - - 2 - - - - - - - 2
Kyrgyz (WP) 64 2 2 0 - - 5 - 2 - - 0 - - - - - - 25
Lurs (Iran) 10 24 0 12 - - 24 16 - - 4 4 - - - - - 5 2
Mishars (Meshchera) 45 10 8 10 - - 10 - 16 - 5 - - - - - - 3 0
Pashtuns
N. Afghanistan
50 9 - - - - 5 7 - -   25 - - - - - 3 4
Pashtuns
S. Afghanistan
67 10 - 8 1 3 7 8 - - - 6 2 - 1 - 1 2 0
Rajput (Ephtalite) 31 - - - - - 17 - - - - 7 - - - - - - 45
Shorians 59 20 0 - - - 0 - 16 - - - 2 - - 0 2 2 2
Soyotes 24 0 0 - - - 0 - 9 - - - 18 - - 27 0 0 18
Tatars (WP)   34 9 4 - - - - - 23 - - - - - - - - - 30
Tatars (Kazan) - - - - - - - - - - - - - - - - - - -
  Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Todjins 24 3 3 - - - - - 11 - - - 8 - - 14 22 0 8
Turkmens (Iran) 15 4 1 4 - - 14 6 - - - 5 - - - - - 43 8
Turkmens (WP) 7 37 0 0 - - 4 - 10 - - 0 - - - - - - 43
Turks (Turkey) 7 16 5 11 - - 34 11 4 - 3 4 - - - - - - 6
Turks (WP) 7 16 5 11 0 0 33 11 4 0 0 0 1 0 0 3 0 20
Tuvinians 18 1 1 0 0 0 0 1 24 0 0 0 6 - 4 9 35 -0
Uigurs 25 18 0 0 0 0 11 5 0 - 0 5 8 - 0 7 0 5 16
Uigurs (East Turkestan) 18 22 0 0 0 - 10 4 6 - - 4 - - - - - - 35
Uigurs (Urumchi) 19 23 - 7 - - 26 - 10 - - 0 - - - - - - 16
Uigurs (Yili river) 15 15 - 0 - - - - 8 - - - - - - - - - 61
Uzbeks 25 10 3 3 - - 21 - - - - 5 - - - - - - 33
Yiyrks (Iran, Mazandaran) 17 4 1 6 - 5 40 21 0 - 0 1 4 - 0 - - 0 0
Slavic populations (Slavic ethnic groups, Nordic) (dominant Y-DNA Hg I)
- Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Bosnians 25 1 42 10 - - - - - - - - - - - - - - 22
Czechs 32 32 18 6 - - 5 5 2 - - - - - - - - - 0
Serbs (Bosnia) 14 6 41 22 0 - 10 1 6 - 0 0 - - - - - - 0
Slovenians 39 21 31 3 - - 4 3 - - - - - - - - - - 0
Slovaks 27 36 18 2 - - 5 5 2 - - - - - - - - - 5
Ukrainians 48 10 22 6 - - 8 2 6 - 1 - - - - - - - 0
North-West Asian populations (Uralic/Ugro-Finn ethnic groups)
  Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Hungarians 24 20 25 8 - - 8 8 4 - 1 1 1 - - - - 3 -
North Asian populations (Fennic-Uralic-Nenets ethnic group) (dominant Y-DNA Hg N)
Chukchis 4 0 0 - - - - - 58 - - - 4 - - - 21 16 0
Finns 31 2 2 - - - - - 63 - - - - - - - - - 22
Estonians 37 9 19 3 - - 1 - 41 - - - - - - - - - -
Nenets 41 - - - - - - - 58 - - - 0 - - - - 0 1
Nganasans - - - - - - - - 92 - - - 5 - - - - - 3
Komi 33 16 5 - - - - - 35 - - - 0 - - - - 0 11
Komi-Permyaks   R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Komi-Zyryans 33 16 5 - - - - - 35 - - - 0 - - - - 0 11
Mordvins (Burtases) 27 13 20 - - - - - 19 - - - 0 - - - - 0 22
Mari 48 3 8 - - - - - 42 - - - 0 - - - - 0 1
Moksha 27 13 19 - - - - - 19 - - - - - - - - - 19
Sakha (Yakuts) (Turkic) 2 2 1 - - - - - 88 - - - 3 - - - - 0 3
Tofalars (Turkic) 13 13 3 - - - - - 59 - - - 6 - - 3 3 -0
Yupik (Eskimo) 0 - - - - - - - 51 0 - - 0 - - - 18 21 0
Udmurts 10 2 1 - - - - - 85 - - - 0 - - - - 0 1
North-East Asian populations
Chukotko-Kamchatkan language family Chukcha, Eskimo
  Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Itelmen (Kamchatka 22 - - - - - - - 11 - - - 67   - - - - 0
Kets 0 0 0 - - - - - 0 - - - 6 - - - - 94 0
Tungus (Ch. Dunhu), Mongols (Austronesian, dominant Y-DNA Hg C)
  Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Buryats 2 1 1 - - 0 1 20 - - - 64 - - - 2 20
Evenks 1 - 5 - - - - - 20 - - - 68 - - - - 4 2
Evens 7 - 3 - - - - - 13 - - - 74 - - - - - 3
Hazara (Pakistan) 61 - - - - - - - - - - - 30 - - - - - 9
Kalmyks (WP) 6 3 - - - - 0 - 3 - - 2 71 - - 4 12 - 0
Koryaks - - - - - - - - 22 - - - 59 - - - 19 - -
Mongols (WP) 9 - - - - - 3 1 11 13 0 0 54 - - 2 5 - 6
Japanese, Koreans, Manchu (dominant Y-DNA Hg O)
  Graph R1a R1b I E1b1b E1b1a H J G N O T L C D F K P Q Others
Japanese 0 0 - - - - - - 4 52 - - 9 35 - - - 1 34
Koreans 2 - - - - - - 2 - 70 - - 16 2 - 2 - - 6
Kian (Qiang) 6 - - - - - - - - 67 - - 9 18 - - - - 0
Manchu - - - - - - - - 14 54 - - 26 3 - 3 - - 0
Y-DNA HAPLOGROUP DEFINITIONS

Family Tree DNA and similar sites provide thumbnail summaries of the different haplogroups :

  • Haplogroup B is one of the oldest Y-chromosome lineages in humans. Haplogroup B is found exclusively in Africa, it is the only African haplogroup among the Eurasian haplogroup branch of B through T, leading to a suggestion that it returned to Africa after its emergence in Eurasia. This lineage was the first to disperse around Africa. Haplogroup B appears at low frequency all around Africa, its highest frequency in Pygmy populations.
  • Haplogroup C is found throughout mainland Asia, the south Pacific, and at low frequency in Native American populations. Haplogroup C originated in southern Asia and spread in all directions. This lineage colonized New Guinea, Australia, and north Asia, and currently is found with its highest diversity in populations of India. In Eurasia, it is a leading haplogroup of the Tungus people, with spillovers to the Tungus neighbors, present Mongols.
  • Haplogroup C3 is believed to have originated in southeast or central Asia. This lineage then spread into northern Asia, and then into the Americas.
  • Haplogroup D2 most likely derived from the D lineage in Japan. It is completely restricted to Japan, and is a very diverse lineage within the aboriginal Japanese and in the Japanese population around Okinawa.
  • Haplogroup E3a is an Africa lineage. It is currently hypothesized that this haplogroup dispersed south from northern Africa within the last 3,000 years, by the Bantu agricultural expansion. E3a is also the most common lineage among African Americans.
  • Haplogroup E3b is believed to have evolved in the Middle East. It expanded into the Mediterranean during the Pleistocene Neolithic expansion. It is currently distributed around the Mediterranean, southern Europe, and in north and east Africa. Haplogroup E3b is connected with maritime spread in Europe and Semitic languages.
  • Haplogroup G may have originated in India or Pakistan, and has dispersed into central Asia, Europe, and the Middle East. The G2 branch of this lineage (containing the P15 mutation) is found most often in Europe and the Middle East.
  • Haplogroup H is nearly completely restricted to India, Sri Lanka, and Pakistan. It was decimated in Europe during 4th-3rd mill. BC population replacement by A1b Kurgan people. European Haplogroup H people were settled farmers.
  • Haplogroups I, I1, and I1a are nearly completely restricted to northwestern Europe (Nordics). These would most likely have been common within Viking populations. One lineage of this group extends down into central Europe. Haplogroups I and N form the base of the Slavic populations.
  • Haplogroup I1b was derived within Scandinavian Paleolithic populations in northwest Europe and has since spread down into southern Europe where it is present at low frequencies.
  • Haplogroup J is found at highest frequencies in Middle Eastern and north African populations where it most likely evolved. This marker has been carried by Middle Eastern traders into Europe, central Asia, India, and Pakistan. Spread of farming to Europe is attributed to spread of Haplogroup J.
  • Haplogroup J2 originated in the northern portion of the Fertile Crescent where it later spread throughout central Asia, the Mediterranean, and south into India. As with other populations with Mediterranean ancestry this lineage is found within Jewish populations. The Cohen modal lineage is found in Haplogroup J2, somewhat recent line.
  • Haplogroup N originated in Siberia, Mongolia, or China approximately 15,000 to 20,000 years ago from the haplogroup NO (50 KYA) of the most productive NOP branch (55 KYA). It was spread across northern Eurasia by large-scale Finno-Ugric human migrations, also called Uralic. Haplogroup N is typical for Baltics 45%, Finns 60%, Nenets 75%, Prussians 28%, Saami 40%, Yakuts 75%. Haplogroups I and N form the base of the Slavic populations.
  • Haplogroup O is the dominant lineage of East Asians, comprising more than a quarter of all males on the world. Among Austronesian-speaking and Han Chinese populations frequency hovers around 55%.
  • Haplogroup Q is the lineage that links Asia and the Americas. This lineage is found in North and Central Asian populations as well as native Americans. This lineage is believed to have originated in Central Asia and migrated through the Altai/Baikal region of northern Eurasia into the Americas.
  • Haplogroup Q3 is the only lineage strictly associated with native American populations. This haplogroup is defined by the presence of the M3 mutation (also known as SY103). This mutation occurred on the Q lineage 8-12 thousand years ago as the migration into the Americas was underway. There is some debate as to on which side of the Bering Strait this mutation occurred, but it definitely happened in the ancestors of the Native American peoples.
  • Haplogroup R1a is believed to have originated in the Eurasian Steppes south of Siberia 20kya. These people were believed to be the first speakers of the Indo-European language group, formed in 4th-3rd mill. BC the N.Pontic refuge by the refugees from the Kurgan carnage. This lineage is currently found in central and western Asia, India, among Türkic populations, and in Slavic populations of Eastern Europe.
  • Haplogroup R1b is believed to have originated in the Eurasian Steppes south of Siberia 16kya. From this lineage originated population of the Kurgan culture, known for the domestication of the horse (approximately 6000 BC), it expanded east and west from the Pontic steppes, reached Western Europe via overland Kurgan waves and via circum-Mediterranean route, decimated farming populace of Europe in 4th-3rd mill. BC, and became the most common haplogroup in European populations. This lineage is the haplogroup containing the Atlantic modal haplotype (HG1). The Haplogroup R1b is identified with non-IE languages of Eurasia and pre-1000 BC Europe, and is identified with populations of the Türkic linguistic family.
  • Haplogroup T remains a promising puzzle, it is genetically close to R/R1a/R1b, it evolved about 13 kya, and may be a valuable tracing tool.
 

A Little Glossaryy

Genetic Diversity of mtDNA

Haplotype

Genetic Diversity (H)

HVSI

RFLP

 
Home
Back
Contents Türkic Genetics Contents Pazyryk Genetics Contents Amerin Genetics
Sources
Roots
Tamgas
Alphabet
Writing
Language
Genetics
Geography
Archeology
Religion
Coins
Wikipedia
Ogur and Oguz
Klyosov A. Türkic DNA genealogy
Datelines
Ephthalite Dateline
Alan Dateline
Avar Dateline
Besenyo Dateline
Bulgar Dateline
Huns Dateline
Karluk Dateline
Khazar Dateline
Kimak Dateline
Kipchak Dateline
Kyrgyz Dateline
Sabir Dateline
Seyanto Dateline
08/24/2010
Рейтинг@Mail.ru “”